
OpenPyRo-A1: An Open Python-based Low-Cost Bimanual Robot for
Embodied AI

Helong Huang1,∗, Christopher E. Mower1,∗, Guowei Huang1,∗, Sarthak Das1, Magnus Dierking1,
Guangyuan Luo1, Kai Tan1, Xi Chen1, Yehai Yang1, Yingbing Chen1, Yiming Zeng1, Yinchuan Li1,
Zhanpeng Zhang1, Shuang Wu1, Yingxue Zhang1, Weichao Qiu1, Tongtong Cao1, Yuzheng Zhuang1,

Guangjian Tian1, Jianye Hao1, Jun Wang2, Haitham Bou-Ammar1,2,†, Xingyue Quan1,†

Huawei Proprietary - Restricted Distribution1

Fig. 1: The OpenPyRo-A1 bimanual humanoid robot.

Abstract— Many real-world tasks, such as assembly, cooking,
and object handovers, require bi-manual coordination. How-
ever, learning such skills via imitation for these systems remains
challenging due to dataset scarcity, driven mainly by the high
cost of bi-manual robotic platforms and the barriers to entry
in robotics software. To address those challenges, this paper
contributes OpenPyRo-A1, a low-cost, bi-manual humanoid
robot with a Python-first modular softwarse framework for
control, planning, and skill learning. Our system supports
VR-based data collection, imitation learning from vision and
low-level positions, and integration with LLMs and VLMs
for high-level task planning. We evaluate OpenPyRo-A1 on
seven bi-manual tasks, collecting over 350 demonstrations via
VR teleoperation and showcasing an agentic framework for
executing tasks from natural language instructions. We hope
that the contributions of the OpenPyRo-A1 hardware, the
publicly available software stack, and the curated dataset of bi-
manual manipulation episodes will advance affordable, scalable
dual-arm robotics1.

I. INTRODUCTION

AI-based control in robotics has seen many remarkable
advancements in recent years [1], [2], [3], [4], [5], [6], [7],
[8], [9]. Particularly, methods for imitation learning [10],
[11], [12], [13] have generated sophisticated policies by
learning from data collected via human demonstrations.

∗,†Equal contribution. 1Huawei Noah’s Ark Lab. 2University College
London.

1The hardware, software and dataset will be publicly available upon
acceptance.

While successful, a key bottleneck is the requirement of large
datasets to learn effective and scalable controllers.

Unlike natural language processing and computer vision,
which have access to vast data sources from the internet,
robotics data is limited [14] due to the high hardware cost
and the complexity of real-world interactions. To tackle these
challenges, large-scale data collection initiatives have been
launched [15], and scaling data collection has emerged as an
increasingly prominent research direction [16], [11].

While a growing body of data is becoming available in
robotics, most of it remains focused on single-arm systems.
Although single-arm robots can handle various tasks, many
tasks can be performed far more efficiently with a bi-manual
arm setup, e.g., in furniture assembly, which may require
the robot to steadily hold a part in place with one arm
while drilling with the other [17], [18], [19], [20], or in
automated cooking, where perfecting chopping requires one
arm to stabilize the ingredient while the other performs
precise cutting [21], [22].

Unfortunately, the problem of limited data resources is
even more pronounced in the bi-manual setting, as there is a
general lack of data collected for dual-arm systems. Even
in the most prominent dataset, OpenX-Embodiment [15],
only 3 out of the 22 embodiments (PR2, xArm bi-manual,
and Baxter) are bi-manual, accounting for just 4 out of the
60 datasets. We argue that the high cost of bimanual robot
platforms is a key reason for the scarcity of real-world data.
Although bimanual robots are used in research, their high



price and increased complexity limit widespread adoption.
In response, we developed the Open Python Robot A1

(OpenPyRo-A1)—a low-cost, bi-manual humanoid robot.
Our design includes both the hardware and a distributed soft-
ware framework, built from the ground up to ensure seamless
system integration. In terms of hardware, OpenPyRo-A1 is
designed to be affordable, easy to repair, and scalable for
future upgrades. It features two 7-DoF arms (equipped with
camera sensors), a torso, a head with an additional installed
camera, and custom-built grippers. Our total hardware cost of
approximately $14K is 2x less than comparable non-hobbyist
projects like Reachy 1 from Pollen Robotic2 and 4.6x less
than their latest platform, Reachy 2.

Our modular software framework follows a Python-first
design. It leverages the Lightweight Communications and
Marshalling (LCM) library for communication to mini-
mize maintenance overhead and reduce complexity. While
the Robot Operating System (ROS) remains the dominant
robotics framework, its complexity often demands expert-
level knowledge even for simple applications. In contrast, our
system simplifies dependency management while allowing
seamless interchange of sensors, teleoperation interfaces,
actuators, and communication protocols without extensive
reconfiguration.

Additionally, given the architectural similarities between
LCM and ROS, users can implement translation nodes for
ROS integration, enabling them to utilize existing drivers
while benefiting from our streamlined and flexible system.

Using our system, we focus on the problem of data
collection, i.e. how humans can best provide task demon-
strations for robotics. In the literature, the two main
approaches are kinesthetic teaching and teleoperation.
While kinesthetic teaching [23], [24] requires physically
guiding the robot—often impractical for bi-manual sys-
tems—teleoperation enables remote control from a safe
distance. Various teleoperation interfaces exist, such as
gamepads or haptic devices [25], [26], but finding intuitive
control mappings for effective operation remains challeng-
ing [27]. Although our system supports numerous interfaces,
this work showcases virtual reality (VR) headsets as the tele-
operation interfaces, leveraging their widespread availability
in research labs and ability to provide an immersive control
scheme that does not necessitate additional high-end haptic
hardware.

We evaluated OpenPyRo-A1 on seven bi-manual tasks,
ranging from pick-and-place to handover and pouring,
demonstrating its versatility in real-world manipulation. Us-
ing our VR-based teleoperation system, we collected over
350 demonstrations, providing a rich dataset for training
robotic skills. These demonstrations were then leveraged for
imitation learning, enabling the robot to acquire and refine
manipulation capabilities. To showcase the flexibility of our
software framework, we implemented imitation learning at
multiple levels: low-level joint position control using Dy-
namic Movement Primitives (DMPs) [28] and vision-based

2https://www.pollen-robotics.com/

policy learning through Action Chunking with Transformers
(ACT) [29], highlighting OpenPyRo-A1’s ability to integrate
both classical and modern learning paradigms.

Building on the trained skills, we propose an Embodied
AI agent that integrates OpenPyRo-A1 with large language
models (DeepSeek) and vision-language models (InternVL
[30]) to enable high-level task planning using learned imi-
tation skills. This agentic framework allows users to specify
tasks using natural language, with the VLM providing scene
descriptions to guide execution. We demonstrate our ap-
proach’s success in a use case requiring the robot to identify
and place specific fruits based on their colors into a basket.

The following is a summary of our main contributions:
• We developed OpenPyRo-A1, a low-cost dual-arm hu-

manoid robot.
• A Python-first modular software framework with li-

braries for collecting data with VR teleoperation.
• A dataset of bi-manual manipulation episodes, inte-

grated with machine learning algorithms for skill learn-
ing from vision and low-level positional data.

• An agentic framework for planning through large lan-
guage and vision-language models.

II. RELATED WORK

The availability of data for single-arm manipulation tasks
has led to the development of numerous successful imitation
learning methods [10], [29], [31]. However, bimanual ma-
nipulation has not seen the same level of progress due to the
lack of data, as stated previously, and due to cost.

To bring down the cost of robotics there have been numer-
ous open-source efforts targeting single-arm systems [32],
[33], [34], and even full humanoids [35], [36], mainly
through platforms like the RoboCup tournament [37], [38],
[39]. However there are only a few commercially available
upper torsos and even fewer open source models [40], [41].
Due to easier access and broader commercial availability,
research labs use humanoid robots for static bimanual tasks.

Using humanoids for these tasks tends to be unneces-
sarily complex for the specific purpose of object manip-
ulation, often requiring more room and extra hardware to
suspend/stabilize the robot. These complex robots make
it difficult for smaller labs to do bimanual manipulation,
forcing them to turn to other solutions.

One of these solutions involves placing two commercial
single-arm robots mounted on a shared torso-like struc-
ture [42], [43], [44]. For example, Bi et al. [45] and Shake
[46] use dual UR3 arms for tasks such as kitchen and liquid-
mixing. Similarly, the APEX system [47] employs dual
Franka arms for precision vector alignment. While effective,
these DIY setups often void the warranty of the robots, while
still bearing a significant cost to buy, e.g. two Franka Emika
Panda or Universal robot arms.

The few available open-source fixed-base upper torso
platforms are still expensive. For instance, the Pollen robot
provides a torso with Python-based teleoperation capabilities,
but its price ranges from 33K USD to over 50K USD while
additionally relying on ROS. More affordable options, such



as [40], [41] or hobbyist-built robots, often fall short in key
areas like payload capacity, accuracy or grasping capabilities.
As a result, they do not provide a viable alternative for
demanding bimanual tasks.

This leaves a clear gap in robotics for a fixed-base dual
arm upper torso that is cheap yet provides reliable perfor-
mance for data collection and research usage.

III. HARDWARE DESIGN

Our hardware design balances cost, performance, and flex-
ibility. It features two robot arms, a torso, head, and custom
grippers. Crafted for precision and modularity, it combines
3D printing for rapid prototyping with an aluminum alloy
frame for strength, durability, and lightweight efficiency.

We consider the following three key principles when
designing OpenPyRo-A1:

Low-cost: The robotic system is designed to be cost-
effective while maintaining high performance. To minimize
manufacturing expenses, the structure integrates 3D-printed
components for non-load-bearing parts and CNC-machined
aluminum alloy (which are also designed to be 3D printed)
for critical structural elements, balancing durability with af-
fordability. The system also employs off-the-shelf actuators,
sensors, and electronics, reducing reliance on custom hard-
ware and facilitating easier procurement. Furthermore, the
design prioritizes assembly with minimal specialized tools,
making it accessible to a broader range of users, including
research institutions and small-scale industrial settings.

Ease of repair: A modular architecture ensures that indi-
vidual components can be easily replaced or upgraded with-
out requiring extensive disassembly. Key features include
easy-access access panels (located in the torso), standardized
fasteners, and color-coded wiring harnesses for simplified
troubleshooting. Furthermore, all electrical and mechanical
connections are quick-release or plug-and-play, minimizing
downtime in case of failures. The gripper and end-effector
mounting system use universal attachment points, allowing
users to swap between different parts without requiring
modifications.

Scalability: The system is designed to be easily up-
graded as new technologies become available. The elec-
tronics and software architecture support modular firmware
updates, ensuring compatibility with future peripherals. The
frame includes pre-drilled expansion points, allowing users
to attach additional sensors, cameras, or actuators without
requiring extensive modifications. Furthermore, the power
and communication architecture are designed with additional
capacity, ensuring that new components can be integrated
seamlessly without overloading the system.

A. Overall Specification

OpenPyRo-A1 has 18-DoF including the two arms, base
joints and grippers. The robot has two custom grippers
attached at the arm end-effectors.

Dimensions: The robot footprint is 70×70cm. The height
from the base to the head is 65cm.

Fig. 3: Robot reachability map showing the right arm’s
workspace, including torso joints. Green indicates reachable
areas, red indicates limited reach, and yellow represents
intermediate zones.

Weight: The total weight of the robot is 47.5kg including
torso and two arms.

Power: The robot is powered by a Mestek 1800W DC
power supply, providing the necessary electrical energy for
its operation.

Sensors: The joints of the robot report joint positions,
velocities, and current. We have designed mounts for Intel
Realsense cameras that can be attached on each gripper and
two on the head. We maintain a modular design throughout
the robot, so these cameras can be swapped out with others,
not included, or re-positioned.

B. Arm and Gripper

Each arm on the robot is 7-DoF. A reachability analy-
sis [48], [49] for the right robot arm including the torso joints
is shown in Figure 3 – the kinematic model is symmetric so
the same image is seen for the left arm (just inverted). The
arm end-effector is designed with standard fittings so that
any gripper—either the OpenPyRo default gripper or another
custom design or commercial alternative—can be swapped
out easily. The robot arm can be controlled in position mode
at a maximum operating frequency of 100Hz.

The robotic arm features a 73 cm reach and is constructed
from aluminum for durability and lightweight operation. Its
actuators are powered by a 48V DC supply, with power
transmission facilitated through a serial connection. The sys-
tem’s control circuitry directly supplies 48V to the motors,
ensuring efficient power delivery.

A custom-designed parallel gripper has been developed for
the robotic arm. The gripper operates at a frequency of 20 Hz
and has a mass of 0.4 kg. It features a maximum finger width
of 9.5 cm and a finger length of 8 cm, with fingers fabricated
from TPU95A for enhanced flexibility and durability. The
gripper’s actuators are identical to those used in the arm, and
motor communication follows the same protocol, ensuring
seamless integration within the system.



C. Torso

The torso of the humanoid robot features a pan-and-
tilt configuration with two joints at the base. The central
section of the torso houses the motor controllers and power
boxes. The robot utilizes EYOU motors, which offer quick
response times, power-off switches, and a communication
baud rate optimized for stable data transmission via CAN
bus. The motors in the torso are powered and controlled in
the same manner as the robotic arms, and the material used
for the torso is identical to that of the arms. Communication
with the motors is handled through CAN bus, with the
system operating at a maximum frequency of 100 Hz for
synchronized and efficient control.

D. Onboard processing unit

The robot is equipped with an onboard processing unit,
using an OrangePi for control, the OrangePi board man-
ages the robot’s movements and coordinates communication
between various components. Motor control is handled via
a PD control node, operating at a frequency of 100 Hz.
The OrangePi is capable of functioning within a distributed
system setup, offering a reliable framework for robot control
and facilitating seamless communication between different
computers. Additionally, up to two cameras are integrated
with the PD control node, providing synchronized visual
feedback during operation.

IV. SOFTWARE ARCHITECTURE

To complement OpenPyRo-A1, we introduce noahr, a
Python-first modular software framework designed for ac-
cessibility, even for those without advanced robotics knowl-
edge. It follows a distributed architecture with a publisher-
subscriber communication model, simplifying robot control,
perception, and data collection. The framework is built to
be lightweight and flexible enough to integrate with existing
robotics ecosystems while being easy to install. A single
pip install command sets up all required dependencies
and the onboard OrangePi processing unit and external
computing devices can be connected via a single Ethernet
connection, enabling swift development process.

A. Communication and Robot Interface

Efficient communication and control are essential for real-
time robotic operations. To achieve this, we leverage the
Lightweight Communications and Marshalling (LCM) li-
brary [50], which supports custom message types and ensures
low-latency, high-reliability communication. LCM is well-
suited for transmitting extensive data at high frequencies,
making it ideal for distributed robotics systems.

At the system’s core, we provide a structured node class
(BaseNode) that simplifies the creation of publishers and
subscribers. This enables users to define message processing
logic while managing execution frequencies efficiently.

We provide a high-level robot interface class to simplify
accessing the robot, abstracting low-level communication
details. This class enables users to: (i) access real-time robot
state information (joint positions, velocities, and onboard

sensors); (ii) execute joint position commands, whether
streaming or trajectory-based; and (iii) utilize task-space
control for higher-level robotic manipulation tasks. This class
enables users to: (i) access real-time robot state information
(joint positions, velocities, and onboard sensors); (ii) execute
joint position commands, whether streaming or trajectory-
based; and (iii) utilize task-space control for higher-level
robotic manipulation tasks.

B. Kinematics and Control

To map goal states defined in task space to joint com-
mands, we implement forward kinematics using Kinpy [51],
modified to support CasADi backend for array, variable,
and parameter representation, alongside the Spatial-CasADi
library [52] for spatial transformations.

Motor control is performed through a custom CAN bus
interface, built on Python’s ctypes library. A PD controller
regulates joint positions, enforces safety limits, and ensures
smooth motion, publishing joint targets and states at 100Hz.

C. Teleoperation and Data Collection

We provide an immersive, real-time control experience us-
ing the Meta Quest 3 headset for teleoperation. Additionally,
our system supports alternative control methods, including
PlayStation 4 controllers and keyboard-based operation. The
framework streamlines data collection with LCM-based log-
ging, enabling seamless recording of all network messages.
A conversion script allows users to export raw data into CSV
format for further analysis.

D. Debugging and Visualization

To support debugging and visualization, we provide live
joint state visualization for real-time monitoring of robot
movements, message inspection tools to track communi-
cation between components, and a graphical interface for
network analysis built upon LCM’s native tools, facilitating
efficient system diagnostics.

E. Safety

Safety is a fundamental concern in robotic systems, and
our framework incorporates multiple mechanisms to mitigate
risks. A dedicated safety node acts as an intermediary
between user commands and motor execution, ensuring that
both joint and task-space limits are enforced. For additional
protection, an optional workspace restriction mode prevents
accidental self-collisions, allowing experienced users to dis-
able it if needed. An emergency stop (E-stop) system is also
being developed to enhance operational safety further.

V. DATASET AND DEMONSTRATIONS

This section overviews the dataset we plan to release and
highlights several teleoperation demonstrations that show-
case our dual-arm robot’s capability to perform diverse and
dexterous tasks.



Fig. 4: Snapshots from teleoperation demonstrations on OpenPyRo-A1. Tasks demonstrated are (from top-row to bottom):
(i) fold clothes, (ii) open bag and pick out item, (iii) slice the apple, and (iv) wash the dish.

Fig. 5: Snapshots of imitation learning tasks with ACT. Tasks
demonstrated are (from top-row to bottom): (i) dual-arm
pick-place apple then lemon into the bowl, (ii) push apple
to target.

Fig. 6: Snapshots from imitation learning tasks with DMP
for the task open cupboard and reach to pre-grasp trained

A. Dataset

The dataset accompanying this paper consists of over 350
demonstrations with 6 tasks, including (values in square
brackets are the number of episodes per task). (i) Exchange
pepper [60]: the robot picks up a pepper with one hand,
exchanges it to the other, and places it down. (i) Pick a cup
and place [60]: the robot picks a cup from the table, and
places it into a bowl held by the other hand. (iii) Pick lemon
and apple, then place into bowl [80]: the robot picks with
one arm an apple, places it into the bowl, then uses the other
arm to pick a lemon and places it into the same bowl. (iv)
Tip rice into bowl [60]: the robot holds a bowl, then grasp
a cup filled with rice and tips it into the bowl. (v) Pour
water [50]: the robot uses one arm to hold a bowl, and then
grasps a cup filled with water and pours the water into the
bowl. (vi) Push fruit to target [50]: the robot pushes two
pieces of fruit placed on the table to a target. Each episode
is collected as an LCM-log file. We have provided helper
scripts to load these as Pandas data-frames, or convert them
to HDF5 format.

Every log file includes the following data streams. (a) Data
from the VR headset. (b) The robot’s current joint states.
(c) Camera feeds from four Intel RealSense cameras. The
L515 model is mounted in the head, the D455 model in the
neck, and two D435 models are mounted on each gripper.



Fig. 7: Snapshots from the embodied AI use-case for the task “fill the basket with yellow fruit”.

Additionally, each message includes time stamps.

B. Teleoperation demonstrations

We showcase the robot’s ability to perform a variety of
dexterous tasks using our VR teleoperation setup, which
controls the end-effectors via the VR controllers. A custom
IK solver maps the controller target poses to joint states,
which are then sent to the robot as commands. We perform
four tasks, shown in Figure 4: (i) fold clothes, (ii) open bag
and pick out item, (iii) slice the apple, and (iv) wash the
dish. Please See the accompanying video where we showcase
several more teleoperation tasks.

VI. USE CASES

This section describes two use-cases of our robot. First,
we have trained several policies using imitation learning, and
then integrated these in an agentic framework connected with
an LLM (Deepseek) to chose actions, and a VLM (InternVL)
to describe the scene.

A. Imitation Learning

Two common imitation learning methods were used in our
use-case. We implemented Dynamic Movement Primitives
(DMP) [28], [31] for joint position control and Action
Chunking with Transformers (ACT) [29] for vision-based
action generation.

For each task we collected 80 episodes using our VR
teleoperation system. Two tasks were trained with ACT:
(i) pick an apple and place into the bowl, then with the
other arm, pick a lemon and place into the bowl, and (ii)
push an apple to a target position. The snapshots from the
experiments are shown in Figure 5.

We also used a DMP for the task: open cupboard with one
arm and reach to a target pose with the other arm. This task
is shown in Figure 6.

B. Embodied AI

The previous section demonstrated that our robot can
learn and deploy multiple skills. Building on this, we further
evaluate the system’s adaptability by integrating different im-
itation learning approaches, enabling both low-dimensional
and vision-based action spaces. Here, we present an agentic
framework for Embodied AI (Figure 8). Our goal is to show
here that our system is capable to utilize the learned skills
(from imitation learning) and orchestrate them to conduct a
task defined by natural spoken language.

First, a prompt for the LLM is generated. A human records
a task description using a microphone, and the audio is
converted to text [53]. An image of the environment is then
processed by a VLM to generate a scene description. Both

AgentSkill library

Prompt

Scene 

description

Task 

description

Skill library 

description

Skill
“Make 

me 
tea”

Fig. 8: Embodied AI agent framework on OpenPyRo-A1.

the task and scene descriptions are included in the prompt,
along with a description of available skills and a history
of previously enacted skills. At each step, the LLM selects
the next skill to enact. We integrate the LLM (DEEPSEEK)
and VLM (INTERNVL) following the approach of Zeng et
al. [30].

We learned two additional policies with DMP: reach
to fruit and reach to basket. Then, we collected a joint
configuration for grasping each fruit. The “reach to fruit”
demonstration was then able to generalize by passing the
collected joint configuration Two additional actions were
implemented for opening and closing the gripper.

In total, the skills available for the agent are as follows:
(1) open/close gripper, (2) reach to fruit (parameterized on
which fruit), (3) reach to basket, (4) open-cupboard and reach
to target.

We successfully demonstrated our Embodied AI frame-
work on the task: “fill the basket with yellow fruit.” In each
case, the skill library contained redundant skill, illustrating
that the LLM was able to reason about skills that were un-
necessary for the task. Furthermore, by integrating imitation
learning methods, we highlight the framework’s ability to
generalize across different skill execution strategies, com-
bining high-level reasoning with learned low-level control
policies.

VII. CONCLUSIONS

In this work, we introduce OpenPyRo-A1, a low-cost,
modular dual-arm humanoid robot. Additionally, we present
a distributed, Python-based framework for interfacing with
the robot, as well as a pipeline for data collection, skill
learning, deployment, and Embodied AI. We validate the
hardware, software, and imitation learning pipeline through
a series of experiments demonstrating the robot’s capability
to complete complex manipulation tasks. Future work will
focus on enhancing the software, developing integrated force
control, adding a moving chassis or legs to the robot and test-
ing alternative materials to further reduce cost and improve
durability.
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